3.311 \(\int \frac{x^9}{a+b x^4+c x^8} \, dx\)

Optimal. Leaf size=192 \[ -\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} c^{3/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{2 \sqrt{2} c^{3/2} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{x^2}{2 c} \]

[Out]

x^2/(2*c) - ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/
(2*Sqrt[2]*c^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[
c]*x^2)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*c^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 0.338914, antiderivative size = 192, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {1359, 1122, 1166, 205} \[ -\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} c^{3/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{2 \sqrt{2} c^{3/2} \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{x^2}{2 c} \]

Antiderivative was successfully verified.

[In]

Int[x^9/(a + b*x^4 + c*x^8),x]

[Out]

x^2/(2*c) - ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/
(2*Sqrt[2]*c^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[
c]*x^2)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*c^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 1359

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[
1/k, Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k) + c*x^((2*n)/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b,
 c, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 1122

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d^3*(d*x)^(m - 3)*(a + b*
x^2 + c*x^4)^(p + 1))/(c*(m + 4*p + 1)), x] - Dist[d^4/(c*(m + 4*p + 1)), Int[(d*x)^(m - 4)*Simp[a*(m - 3) + b
*(m + 2*p - 1)*x^2, x]*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && Gt
Q[m, 3] && NeQ[m + 4*p + 1, 0] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^9}{a+b x^4+c x^8} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{x^4}{a+b x^2+c x^4} \, dx,x,x^2\right )\\ &=\frac{x^2}{2 c}-\frac{\operatorname{Subst}\left (\int \frac{a+b x^2}{a+b x^2+c x^4} \, dx,x,x^2\right )}{2 c}\\ &=\frac{x^2}{2 c}-\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,x^2\right )}{4 c}-\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,x^2\right )}{4 c}\\ &=\frac{x^2}{2 c}-\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} c^{3/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} c^{3/2} \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 0.132932, size = 210, normalized size = 1.09 \[ \frac{-\frac{\sqrt{2} \left (b \sqrt{b^2-4 a c}+2 a c-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{2} \left (b \sqrt{b^2-4 a c}-2 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}+2 \sqrt{c} x^2}{4 c^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^9/(a + b*x^4 + c*x^8),x]

[Out]

(2*Sqrt[c]*x^2 - (Sqrt[2]*(-b^2 + 2*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b - Sqrt[b^2
- 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[2]*(b^2 - 2*a*c + b*Sqrt[b^2 - 4*a*c])*Arc
Tan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(4*c^
(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.035, size = 360, normalized size = 1.9 \begin{align*}{\frac{{x}^{2}}{2\,c}}-{\frac{\sqrt{2}b}{4\,c}\arctan \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{\sqrt{2}a}{2}\arctan \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{\sqrt{2}{b}^{2}}{4\,c}\arctan \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{\sqrt{2}b}{4\,c}{\it Artanh} \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{\sqrt{2}a}{2}{\it Artanh} \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{\sqrt{2}{b}^{2}}{4\,c}{\it Artanh} \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^9/(c*x^8+b*x^4+a),x)

[Out]

1/2*x^2/c-1/4/c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)
)*b+1/2/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2
))*c)^(1/2))*a-1/4/c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x^2*2^(1/2)/((b+(-4*
a*c+b^2)^(1/2))*c)^(1/2))*b^2+1/4/c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x^2*2^(1/2)/((-b+(-4*a
*c+b^2)^(1/2))*c)^(1/2))*b+1/2/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x^2*2^(1
/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a-1/4/c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*ar
ctanh(c*x^2*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^9/(c*x^8+b*x^4+a),x, algorithm="maxima")

[Out]

1/2*x^2/c - integrate((b*x^4 + a)*x/(c*x^8 + b*x^4 + a), x)/c

________________________________________________________________________________________

Fricas [B]  time = 1.7006, size = 2192, normalized size = 11.42 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^9/(c*x^8+b*x^4+a),x, algorithm="fricas")

[Out]

-1/4*(sqrt(1/2)*c*sqrt(-(b^3 - 3*a*b*c + (b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c
^7)))/(b^2*c^3 - 4*a*c^4))*log(-(a*b^2 - a^2*c)*x^2 + 1/2*sqrt(1/2)*(b^4 - 5*a*b^2*c + 4*a^2*c^2 - (b^3*c^3 -
4*a*b*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))*sqrt(-(b^3 - 3*a*b*c + (b^2*c^3 - 4*a*c^4)*s
qrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))) - sqrt(1/2)*c*sqrt(-(b^3 - 3*a*b*c
 + (b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))*log(-(a*b^2
 - a^2*c)*x^2 - 1/2*sqrt(1/2)*(b^4 - 5*a*b^2*c + 4*a^2*c^2 - (b^3*c^3 - 4*a*b*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2
*c^2)/(b^2*c^6 - 4*a*c^7)))*sqrt(-(b^3 - 3*a*b*c + (b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c
^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))) + sqrt(1/2)*c*sqrt(-(b^3 - 3*a*b*c - (b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2*a
*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))*log(-(a*b^2 - a^2*c)*x^2 + 1/2*sqrt(1/2)*(b^4 - 5
*a*b^2*c + 4*a^2*c^2 + (b^3*c^3 - 4*a*b*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))*sqrt(-(b^3
 - 3*a*b*c - (b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4)))
- sqrt(1/2)*c*sqrt(-(b^3 - 3*a*b*c - (b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7))
)/(b^2*c^3 - 4*a*c^4))*log(-(a*b^2 - a^2*c)*x^2 - 1/2*sqrt(1/2)*(b^4 - 5*a*b^2*c + 4*a^2*c^2 + (b^3*c^3 - 4*a*
b*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))*sqrt(-(b^3 - 3*a*b*c - (b^2*c^3 - 4*a*c^4)*sqrt(
(b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))) - 2*x^2)/c

________________________________________________________________________________________

Sympy [A]  time = 3.20674, size = 134, normalized size = 0.7 \begin{align*} \operatorname{RootSum}{\left (t^{4} \left (4096 a^{2} c^{5} - 2048 a b^{2} c^{4} + 256 b^{4} c^{3}\right ) + t^{2} \left (192 a^{2} b c^{2} - 112 a b^{3} c + 16 b^{5}\right ) + a^{3}, \left ( t \mapsto t \log{\left (x^{2} + \frac{256 t^{3} a b c^{4} - 64 t^{3} b^{3} c^{3} - 8 t a^{2} c^{2} + 16 t a b^{2} c - 4 t b^{4}}{a^{2} c - a b^{2}} \right )} \right )\right )} + \frac{x^{2}}{2 c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**9/(c*x**8+b*x**4+a),x)

[Out]

RootSum(_t**4*(4096*a**2*c**5 - 2048*a*b**2*c**4 + 256*b**4*c**3) + _t**2*(192*a**2*b*c**2 - 112*a*b**3*c + 16
*b**5) + a**3, Lambda(_t, _t*log(x**2 + (256*_t**3*a*b*c**4 - 64*_t**3*b**3*c**3 - 8*_t*a**2*c**2 + 16*_t*a*b*
*2*c - 4*_t*b**4)/(a**2*c - a*b**2)))) + x**2/(2*c)

________________________________________________________________________________________

Giac [C]  time = 8.02828, size = 1721, normalized size = 8.96 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^9/(c*x^8+b*x^4+a),x, algorithm="giac")

[Out]

1/2*x^2/c - ((a*c^3)^(1/4)*b*c*x^4*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*re
al_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*b*c*x^4*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqr
t(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + (a*c^3)^(1/4)*a*c*cosh(1/2*im
ag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) -
 (a*c^3)^(1/4)*a*c*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1
/2*sqrt(a*c)*b/(a*abs(c))))))*arctan((x^2 - (a/c)^(1/4)*cos(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))/
((a/c)^(1/4)*sin(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))/(sqrt(b^2 - 4*a*c)*b*c*abs(c) - (b^2 - 4*a
*c)*c^2) - ((a*c^3)^(1/4)*b*c*x^4*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*rea
l_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*b*c*x^4*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt
(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + (a*c^3)^(1/4)*a*c*cosh(1/2*ima
g_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) -
(a*c^3)^(1/4)*a*c*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/
2*sqrt(a*c)*b/(a*abs(c))))))*arctan((x^2 - (a/c)^(1/4)*cos(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))/(
(a/c)^(1/4)*sin(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))/(sqrt(b^2 - 4*a*c)*b*c*abs(c) - (b^2 - 4*a*
c)*c^2) + 1/2*((a*c^3)^(1/4)*b*c*x^4*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*
imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*b*c*x^4*cos(5/4*pi + 1/2*real_part(arcsin(1/2*s
qrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + (a*c^3)^(1/4)*a*c*cos(5/4*p
i + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))
 - (a*c^3)^(1/4)*a*c*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin
(1/2*sqrt(a*c)*b/(a*abs(c))))))*log(x^4 - 2*x^2*(a/c)^(1/4)*cos(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c))
)) + sqrt(a/c))/(sqrt(b^2 - 4*a*c)*b*c*abs(c) - (b^2 - 4*a*c)*c^2) + 1/2*((a*c^3)^(1/4)*b*c*x^4*cos(1/4*pi + 1
/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a
*c^3)^(1/4)*b*c*x^4*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(
1/2*sqrt(a*c)*b/(a*abs(c))))) + (a*c^3)^(1/4)*a*c*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))
)))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*a*c*cos(1/4*pi + 1/2*real_part(arc
sin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*log(x^4 - 2*x^2*(a/
c)^(1/4)*cos(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))) + sqrt(a/c))/(sqrt(b^2 - 4*a*c)*b*c*abs(c) - (b^
2 - 4*a*c)*c^2)